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Dynamical approach to the microcanonical ensemble
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An analytical method to compute thermodynamic properties of a given Hamiltonian system is proposed.
This method combines ideas of both dynamical systems and ensemble approaches to thermodynamics, provid-
ing de facto a possible alternative to traditional ensemble methods. Thermodynamic properties are extracted
from effective motion equations. These equations are obtained by introducing a general variational principle
applied to an action averaged over a statistical ensemble of paths defined on the constant energy surface. The
method is applied first to the one-dimensiopaFermi-Pasta-Ulam chain and to the two-dimensional lattite
model. In both cases, the method gives a good insight of some of their statistical and dynamical properties.
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The problem raised by Clausius and the second principl¢he dot denotes time derivative and the corresponding action
found its answer with Boltzmann and the rise of equilibriumA= [dtL. The basis of the proposed method relies on the
statistical physicg1,2]. An essential point in the theory is following claim: since the thermodynamic state is label in-
related to the law of large numbers, which ensures that flucdependent, we may average the Lagrangian over the labels,
tuations around mean values of the thermodynamic quantand apply the variational principle on threean dynamical
ties are negligibld3]. The concept ofensembless intro-  system
duced, as for instance, the microcanonical ensemble for
isolated systems, and their associated measures are used to
average. Developments within the ensemble framework have (6A)=o(A)= 5f dt(L)=0, 1)
generalized the use of various techniques such as perturba-

tion expansions, mean-field approximation, or renormaliza(where<, .-} denotes averaging over the labelBhe second
tion group[4] and greatly improved our understanding of equality in Eq.(1) is imposed as a compatibility condition at
phase transitions phenomefgee, for instance, the review equilibrium and defines a smooth path as the average of a
[5] and references therginHowever, the computation of fiow of paths of the original system. We note that after the
thermodynamic properties for a given Hamiltonian systempyerage is performed, trajectories and points related to the
remains in general inextricable. _mean dynamical systemust already comprise some infor-
The purpose of this paper is to introduce an analyticaination on the thermodynamic state, hence, we shall refer to
approach of the thermodynamic limit and provide an alternathe resulting motion equations asermodynamic motion
tive to classical techniques. This method relies on the |argeequations Let us now consider Hamiltonian systems of the
size limit and the universality of trajectoriégood ergodic type H=p%2+V(q), namely, quadratic in momentum and
and mixing properties are assumede define an ensemble \ith separated conjugated variables. Microcanonical statis-
of paths drawn on the energy surface and compute thermics |eads to a linear relation between the mean kinetic en-
dynamic variables through averaged equations of motiongrgy MC p2/2 and the temperatur® (MC stands for micro-
This approach applies to systems at equilibrium, and proveganonical averaging6] and predicts that the momentum is
to be very successful in the chosen examples. Note that thg5,ssian with each componept independent and a vari-
ensemble ave(aging implie; a large-time limit before the,, .o proportional to the temperature NFGT. In the ca-
'f”“ge system limit, but we invert the order of these twopq ey ensemble, this results in a trivial factorization of the
limits. %artition function, all the complexity being included in the

Let us identify a set of trajectories on the hypersurface, entia|v. The present approach uses this Gaussian prop-
defined by the microcanonical measure in the phase space by

a set of labels”, which may be initial conditions for in-
stance. The thermodynamic state does then not depend on
these labelqthis property permits the introduction of the
ensemble averagingln the same spirit, we consider a family

of pathsq,(t) (we noted, explicitly, the timé and label/
dependencegirawn on the constant energy surfdsee Fig.

1). To each path, we associate a Lagrandién, ,q,) where

*Electronic address: leoncini@cims.nyu.edu FIG. 1. Representation of the constant energy surface. Different
TElectronic address: Alberto.Verga@irphe.univ-mrs.fr labeled paths are drawn on it.
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erty and reverses the usual argument to pass from time avel; = —wékak- Equilibrium is imposed by the Jeans condi-
aging to ensemble averaging: at thermal equilibrium, we i”‘tion, which give3a§=2T/Nw§k and leads to the thermody-
terpretp as being a Gaussian stochastic process on the labels, i functione(T)=T.

and get thermodynamic quantities from the mean dynamical \ye consider now the Fermi-Pasta-Ul&fPU) problem
system. We now propose a possible implementation of thesg; 5 gne-dimensiongB-FPU chain of oscillators. The ther-

ideas. _ o o _ modynamics of this model has been exactly computed within
't\rl1ve cog_s;ld?r a ""_‘tt'clé'n d'mezf'onDh_ 1t2) Of:\l S|tdes the canonical ensemblg9]. The Hamiltonian readsH

with coordinates¢;, i=1, ... N. At each sitei is placed a = (U2)S [ P2+ V(q+1— ) +V(Gi—ai_1)], where V(X)

particle, in gengral coupled .to its neighbors, havmg momen-, 2,5, Bx14. The averaged potential-energy density

tum p; and conjugate coordinatg. We take units such that = (V)/N is then

the lattice spacing, the Boltzmann constant, and the mass are

equal to one. Sincp; is Gaussian, we choose to represent it 3 5 X
as a superposition of random-phased waves v= ; s§a§+zﬂsﬁa‘k‘ +3B8 > sis atal,, (4
k#k'
Nko where we used the notatiagp=sin(k/2). It is worth noticing
pi= kE ay cog kX + ¢y), (2)  that by considering as the dynamical variables of a system,
=0

the interactiorv becomes of the mean-field type as the sec-
ond term in Eq.(4) involves interaction between alt, os-
where the wave-numbdgis in the reciprocal latticéan in-  Cillators. The thermodynamic motion equations are obtained

teger multiple ofky=27/NP)), the wave amplitude ig,,  as before from the Lagrangian densifa,a)= 3 af/2
and its phasep, is uniformly distributed on the circle. The —v(a)],

momentum set is labeled, using E), with the set of

phases”’={¢,}. This equation may also be interpretedasa  __ 2 _ 2 2 _ 2 2
change of variables, frompto «, with constant Jacobiathe =~ o 1+Q—3Bsiaj]a, Q 6'8§k: Siatic: (9
change is linear and we chose an equal number of modes and

particleg. Besides, if the total momentum is conserved, wewhereQ is a mean-fieldintensive variable. Its fluctuations

choose to takézozo. As the variance of; is fixed, we shall at equilibrium are of the orded(1/\/N). Hence, we consider

: it in Eq. (5) as a constant. This is the large system liiit
assume that the, are all of the same ordéwe need a large o0 taken before the—s limit. In this approximation(s)

number of relevant modes for the center-limit theorem to : !
describes a set of uncoupled oscillators. Moreover, as we

apply. Using the relatior{p) = = ai/2 (we average over the erify a posteriori to the same order of approximation we
random phasgsnd imposing that at equilibrium the fluctua- peglect the third term in the brackdtsis smaller than th€
tions are small, we write(p?)~T and obtain af term, by a factorO(1/N)]. We then obtain a simple linear
~O[(T/N)] (we call this relation, the Jeans conditibfi). ~ wave equation with a dispersion relatiasf= w3, (1+ Q)

We shall see in the examples that for this scalinglifor a [10]. The Jeans condition giveﬁaﬁ%ZT/N, and allows an
and the short-range interaction, the mean dynamical systesstimation of the neglected tersﬁaﬁwT/[ZN(lJrQ)]. Us-
becomes a set of oscillators with mean-field-type interactiongng now the dispersion relation, the Jeans condition, and the
and a kind of Jeans spectrum. The coordinate variables assgefinition of Q, we obtainQ(1+ Q)/38=T and the function

ciated with the representation of momeli2a are Q=Q(T). Sincev =(2Q+Q?/128 we finally get the ther-
modynamic relation
Nko
T J1+128T-1
gi=ap+ >, oy Cogkx+ by). (3 v=—+ —B (6)
K=o 4 243

. This result is compared with the canonical df@) in Fig. 2.
Note that this equation supposes true the relappad;.  The two results are in very good agreement and we speculate
The equilibrium state is constructed from the averaged Lait is exact.
grangianL=(L)/N, the condition that the paths belong to  For the last example, we consider a two-dimensional sys-
the energy surface(T)=E/N=(H)/N, and the Jeans con- tem (D=2) exhibiting a second-order phase transition, the
dition that fixes the temperature from the averaged kinetigo-called dynamical lattice* model studied inf11]. This
energy. We in fact applied a version of this method to themodel is defined by the Hamiltonian
Kosterlitz-Thouless phase transition in ti& model[8].

We shall start to test this approach with the generic case N p; , N,

of a chain of coupled harmonic oscillators. The Hamiltonian H=2, PR R > (@—-9)% @
writesH=(1/2)2 [ p?+ (g +1—0;)?]. Using the expressions ' 2
(2) and (3) we compute the averaged Lagrangiah \vherem and\ are real parametersi=1 is the coupling
= (1/4)2[ af— w3 a?], wherew3, = 4 sirtk/2 and extremize  constant, andi,j) denotes the summation over the close
the action to obtain the thermodynamic motion equationsieighbors on a square lattice. In contrast with the other cases,
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FIG. 3. Solutions of the implicit Eq(14), for m®>=2 and\

0 . \ . =0.6. We notice that depending on the valueTofup to three

0 1 2 Tem iamre 4 5 6 different solutions foQ exist giving rise to three different branches,
P respectively, labeledQ;,Q,,Q3. The critical temperaturél, is

identified.

FIG. 2. Potential energy versus temperature go+0.1. The

dashed line corresponds to the result obtainePhywhile the solid 3 ]
line corresponds to Eq6). To solve Eq.(10), we neglect they, term, as we did for the

B-FPU casdlarge system limjtand obtain a wave equation
where thek=0 modea, was a free parameter, in this ex- With the dispersion relationwi= w§ +Q(T). Q(T) is
ample, it is relevant and corresponds to the averagetbft  given by,
is proportional to the magnetization of the system and is

. . e . A

independent of t_|me at equ_lllbrlum._The computation of the 02=2(0Q,-Q), 0<Q,, (12)
averaged potential energy is very similar to {BéPU case, 2
1 N N ) 2N

U:Z; (wék—m2+ Ea% aﬁ+3—2k§(/ aﬁak, Q —Z(Q_Q*), Q>Q,, (13

N A m? , N, where we used the definition €, and Eq.(11). We notice

+ QEK ag~ 5 @t gy %- (8 that Q is the frequency corresponding to the abskstO

mode.
Given the Jeans conditiam?=2T/(Nw?), we notice that
as long a2 #0 (Q#Q,), the aE term isa posteriorineg-
A A ligible, we may therefore expect results obtained with this
O:a0(€a§+ZQ—m2>, (9 approximation to be accurate everywhere bufreta) the
transition. Another consequence of this condition is that most
of the modes have comparable amplitudes(®o# 0, which
@+ fas (10) then implies a Gaussian-like distribution fqr At the same
8k order of approximation, in the thermodynamic limit, we may
computeQ(T), identifying it to a Riemann integral. Using
where w3, =4 (sirfk/2+ sinzky/2) is the free harmonic fre- the ) given by the Jeans spectrum, we obtain the following
quency k=(ky,ky) is now a vector in the planeand Q implicit equation forQ(T):
=3 af is an intensive variable.
Equation(9) has multiple solutions invy depending on T 4
the temperature throug=Q(T). Since ap=(q;) is the Q(M)=—akK(a), a= 4+0%T)’
order parameter, we anticipate the existence of a phase tran-
sition in the thermodynamic state. Indeed, the only solutionyhereK (a) is the complete elliptic integral of the first kind
is ap=0 for Q>Q, =4m?/\ but for Q<Q, , other solu- (72441 aZsir? 6.
tions with finite values of the order parameter exist The solutions of Eq(14) has three branches, plotted on
Fig. 3. We choose the same valua$=2 and\ =0.6 as the
ones used if11]. We first notice the existence of a special
temperature close to 19.69 localizes the phase-transition tem-

The thermodynamic motion equations are

. N A
a=— ( wgk—mz-l—zag—l- ZQ

(14)

, 6m? 3 3
aO_T_EQ_E(Q*_Q)' (11
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[11]. The physical relevant solution is the one whose energy
is the smaller for a given temperature, which translate in the
upper line in the figure. The transition is then identified at a
density of energye.= 25.07, whose corresponding tempera-
ture isT.=19.69. These results are in good agreement with
the one predicted by numerical simulatiofikl], respec-
tively, T.=17.65 ance.=21.1. Using Eq(11), we have also
access to the square of the magnetization and there is also a
good quantitative agreement with the numerical results. The
discontinuous behavior of the magnetization at the transition
is although surprising. This behavior was also observed nu-
merically in[11], and is explained by noticing that the true

order parameter i§q|) and not{q)|. In the present case, we
may also wonder whether this behavior is due to khe o
limit taken before thé—c. Indeed, the neglected terms are
relevant at the transition, and only become negligible around
the transition after theN—oo limit, which may affect the
nature of the observed transition. However, this behavior
FIG. 4. Temperature versus density of energy fii=2 and ~ M&Y also find its ori.g.in in tr’1e choice of writing the momen-
N=0.6. The three different branches resulting from the solutions ofum as a superposition @i’ random-phased wavesnoti-

Q presented in Fig. 3 are represented. The physical line is the upp&@t€d Dy the solutions of the linearized equations of motion
one. The transition is clearly identified with,~19.64 ande,  €dual to the number of degrees of freeddmWriting the

~25.07. momentum with the number of mod®&s being a growing
unbounded function oN is sufficient to obtain a Gaussian
perature. Two branches are bel@y =40/3, and result from process. Another representation may then be appropriate to
the expression{12) used in the implicit equation, the third tackle the transition region and, for instance[&}, a high-
one (on the top of the figurecorresponds to the expression temperature approach was used to compute the critical tem-
(13). The fact that the wave-form solutions are not valid for perature.
Q=0Q, translate in the divergence d€(a), since asQ To conclude, we point out that the thermodynamic motion
—Q, , a—1. The divergence is logarithmic, and then for equations method allowed us to compute the macroscopic
sufficiently smallT, a solution aroun®, of Eq.(14) always properties of coupled nonlinear oscillator systems in one and
exists; resulting in the two upper branches being asymptotiévo dimensions. Quantitative agreement with exact or nu-
to theQ(T)=Q, curve asT goes to 0. merical results of these quantities is obtained. Moreover, the
In order to select one branch from another, we comput®hase transition for the* model is detected and a good
their respective density of energy. According to E@.and estimate of the critical energy and temperature are given,

(9), we have two different expressions for the density ofeven though we approximatively solved the thermodynamic
motion equations. We expect that this method will be suc-

L L L L L
0 5 10 15 20 25 30 35
Density of energy

energy,
o 3m* 3\ cessful for other systems and speculate that the actual solv-
T-—+=-0Q2% 0Q<Q, ing of the exact thermodynamics motion equation should
e(T) = 2N 32 (15) lead to an exact thermodynamic limit. We believe it may also
N, be possible to extend the scope of the method to systems out
T=350% Q>Qc. of equilibrium and describe their macroscopic evolution with

the thermodynamic motion equations.
The results are plotted as the temperature versus the density

of energy in Fig. 4 in an analogy to the results presented in We are grateful for fruitful discussions with S. Ruffo.

[1] See Gallavotti's paper for an account of the fundamental con-  3030(1985.
cepts, their history and the original references. G. Gallavotti, [7] J.H. JeansThe Dynamical Theory of Gasé3over, New York,

e-print chao-dyn/94030041994).

[2] J.C. Maxwell, The Scientific PaperéCambridge University

Press, Cambridge, UK, 1890vol. Il, p. 713.

[3] L. Landau and E. LifchitzPhysique StatistiquéVlir, Moscow,

1967).

1954, Chap. 16.

[8] X. Leoncini, A.D. Verga, and S. Ruffo, Phys. Rev5E, 6377
(1998.

[9] R. Livi, M. Pettini, S. Ruffo, and A. Vulpiani, J. Stat. Phy%3,
539 (1987.

[4] M. Le Bellac, Des Pﬁaom'enles Critiques Aux Champs de [10] C. Alabiso, M. Casartelli, and P. Marenzoni, J. Stat. Piigs.

Jauges(Savoirs Actuels, Inter @tions du CNRS, 1988
[5] A. Pelissetto and E. Vicari, e-print cond-mat/001264.
[6] E.M. Pearson, T. Halicioglu, and W.A. Tiller, Phys. Rev323

451 (1995.
[11] L. Caiani, L. Casetti, and M. Pettini, J. Phys. 31, 3357
(1998.

066101-4



