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Dynamical approach to the microcanonical ensemble
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An analytical method to compute thermodynamic properties of a given Hamiltonian system is proposed.
This method combines ideas of both dynamical systems and ensemble approaches to thermodynamics, provid-
ing de facto a possible alternative to traditional ensemble methods. Thermodynamic properties are extracted
from effective motion equations. These equations are obtained by introducing a general variational principle
applied to an action averaged over a statistical ensemble of paths defined on the constant energy surface. The
method is applied first to the one-dimensionalb-Fermi-Pasta-Ulam chain and to the two-dimensional latticew4

model. In both cases, the method gives a good insight of some of their statistical and dynamical properties.
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The problem raised by Clausius and the second princ
found its answer with Boltzmann and the rise of equilibriu
statistical physics@1,2#. An essential point in the theory i
related to the law of large numbers, which ensures that fl
tuations around mean values of the thermodynamic qua
ties are negligible@3#. The concept ofensemblesis intro-
duced, as for instance, the microcanonical ensemble
isolated systems, and their associated measures are us
average. Developments within the ensemble framework h
generalized the use of various techniques such as pertu
tion expansions, mean-field approximation, or renormali
tion group @4# and greatly improved our understanding
phase transitions phenomena~see, for instance, the review
@5# and references therein!. However, the computation o
thermodynamic properties for a given Hamiltonian syst
remains in general inextricable.

The purpose of this paper is to introduce an analyti
approach of the thermodynamic limit and provide an alter
tive to classical techniques. This method relies on the la
size limit and the universality of trajectories~good ergodic
and mixing properties are assumed!. We define an ensembl
of paths drawn on the energy surface and compute ther
dynamic variables through averaged equations of mot
This approach applies to systems at equilibrium, and pro
to be very successful in the chosen examples. Note tha
ensemble averaging implies a large-time limit before
large system limit, but we invert the order of these tw
limits.

Let us identify a set of trajectories on the hypersurfa
defined by the microcanonical measure in the phase spac
a set of labelsl , which may be initial conditions for in-
stance. The thermodynamic state does then not depen
these labels~this property permits the introduction of th
ensemble averaging!. In the same spirit, we consider a fami
of pathsql (t) ~we noted, explicitly, the timet and labell
dependences! drawn on the constant energy surface~see Fig.
1!. To each path, we associate a LagrangianL(ql ,q̇l ) where
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the dot denotes time derivative and the corresponding ac
A5*dt L. The basis of the proposed method relies on
following claim: since the thermodynamic state is label
dependent, we may average the Lagrangian over the la
and apply the variational principle on themean dynamical
system:

^dA&5d^A&5dE dt ^L&50, ~1!

~where^•••& denotes averaging over the labels!. The second
equality in Eq.~1! is imposed as a compatibility condition a
equilibrium and defines a smooth path as the average
flow of paths of the original system. We note that after t
average is performed, trajectories and points related to
mean dynamical systemmust already comprise some info
mation on the thermodynamic state, hence, we shall refe
the resulting motion equations asthermodynamic motion
equations. Let us now consider Hamiltonian systems of t
type H5p2/21V(q), namely, quadratic in momentum an
with separated conjugated variables. Microcanonical sta
tics leads to a linear relation between the mean kinetic
ergy MC p2/2 and the temperatureT ~MC stands for micro-
canonical averaging! @6# and predicts that the momentum
Gaussian with each componentpi independent and a vari
ance proportional to the temperature MCpi

2;T. In the ca-
nonical ensemble, this results in a trivial factorization of t
partition function, all the complexity being included in th
potentialV. The present approach uses this Gaussian p

FIG. 1. Representation of the constant energy surface. Diffe
labeled paths are drawn on it.
©2001 The American Physical Society01-1
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erty and reverses the usual argument to pass from time a
aging to ensemble averaging: at thermal equilibrium, we
terpretp as being a Gaussian stochastic process on the la
and get thermodynamic quantities from the mean dynam
system. We now propose a possible implementation of th
ideas.

We consider a lattice~in dimensionD51,2) of N sites
with coordinatesxi , i 51, . . . ,N. At each sitei is placed a
particle, in general coupled to its neighbors, having mom
tum pi and conjugate coordinateqi . We take units such tha
the lattice spacing, the Boltzmann constant, and the mas
equal to one. Sincepi is Gaussian, we choose to represen
as a superposition of random-phased waves

pi5 (
k50

Nk0

ȧk cos~kxi1fk!, ~2!

where the wave-numberk is in the reciprocal lattice~an in-
teger multiple ofk052p/N(1/D)), the wave amplitude isȧk ,
and its phasefk is uniformly distributed on the circle. The
momentum set is labeled, using Eq.~2!, with the set of
phasesl [$fk%. This equation may also be interpreted as
change of variables, fromp to a, with constant Jacobian~the
change is linear and we chose an equal number of modes
particles!. Besides, if the total momentum is conserved,
choose to takeȧ050. As the variance ofpi is fixed, we shall
assume that theȧk are all of the same order~we need a large
number of relevant modes for the center-limit theorem
apply!. Using the relation̂pi

2&5(ȧk
2/2 ~we average over the

random phases! and imposing that at equilibrium the fluctua
tions are small, we write ^pi

2&'T and obtain ȧk
2

'O@(T/N)# ~we call this relation, the Jeans condition@7#!.
We shall see in the examples that for this scaling inN for ȧ
and the short-range interaction, the mean dynamical sys
becomes a set of oscillators with mean-field-type interacti
and a kind of Jeans spectrum. The coordinate variables a
ciated with the representation of momenta~2! are

qi5a01 (
k5k0

Nk0

ak cos~kxi1fk!. ~3!

Note that this equation supposes true the relationpi5q̇i .
The equilibrium state is constructed from the averaged
grangianL5^L&/N, the condition that the paths belong
the energy surfacee(T)5E/N5^H&/N, and the Jeans con
dition that fixes the temperature from the averaged kin
energy. We in fact applied a version of this method to
Kosterlitz-Thouless phase transition in theXY model @8#.

We shall start to test this approach with the generic c
of a chain of coupled harmonic oscillators. The Hamiltoni
writesH5(1/2)( i@pi

21(qi 112qi)
2#. Using the expression

~2! and ~3! we compute the averaged LagrangianL
5(1/4)(k@ȧk

22v0k
2 ak

2#, wherev0k
2 54 sin2k/2 and extremize

the action to obtain the thermodynamic motion equatio
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äk52v0k
2 ak . Equilibrium is imposed by the Jeans cond

tion, which givesak
252T/Nv0k

2 and leads to the thermody
namic functione(T)5T.

We consider now the Fermi-Pasta-Ulam~FPU! problem
of a one-dimensionalb-FPU chain of oscillators. The ther
modynamics of this model has been exactly computed wit
the canonical ensemble@9#. The Hamiltonian readsH
5(1/2)( i@pi

21V(qi 112qi)1V(qi2qi 21)#, where V(x)
5x2/21bx4/4. The averaged potential-energy densityv
5^V&/N is then

v5(
k

S sk
2ak

21
3

2
bsk

4ak
4D13b (

kÞk8
sk

2sk8
2 ak

2ak8
2 , ~4!

where we used the notationsk5sin(k/2). It is worth noticing
that by consideringa as the dynamical variables of a system
the interactionv becomes of the mean-field type as the s
ond term in Eq.~4! involves interaction between allak os-
cillators. The thermodynamic motion equations are obtain
as before from the Lagrangian densityL(ȧ,a)5(k@ȧk

2/2
2v(a)#,

äk52v0k
2 @11Q23bsk

2ak
2#ak , Q56b(

k
sk

2ak
2 , ~5!

whereQ is a mean-field~intensive! variable. Its fluctuations
at equilibrium are of the orderO(1/AN). Hence, we conside
it in Eq. ~5! as a constant. This is the large system limitN
→` taken before thet→` limit. In this approximation~5!
describes a set of uncoupled oscillators. Moreover, as
verify a posteriori, to the same order of approximation w
neglect the third term in the brackets@it is smaller than theQ
term, by a factorO(1/N)]. We then obtain a simple linea
wave equation with a dispersion relationvk

25v0k
2 (11Q)

@10#. The Jeans condition givesak
2vk

2'2T/N, and allows an
estimation of the neglected termsk

2ak
2'T/@2N(11Q)#. Us-

ing now the dispersion relation, the Jeans condition, and
definition ofQ, we obtainQ(11Q)/3b5T and the function
Q5Q(T). Sincev5(2Q1Q2)/12b we finally get the ther-
modynamic relation

v5
T

4
1

A1112bT21

24b
. ~6!

This result is compared with the canonical one~@9#! in Fig. 2.
The two results are in very good agreement and we specu
it is exact.

For the last example, we consider a two-dimensional s
tem (D52) exhibiting a second-order phase transition, t
so-called dynamical latticew4 model studied in@11#. This
model is defined by the Hamiltonian

H5(
i 51

N S pi
2

2
2

m2

2
qi

21
l

4!
qi

4D 1
J

2 (
^ i , j &

~qi2qj !
2, ~7!

where m and l are real parameters,J51 is the coupling
constant, and̂ i , j & denotes the summation over the clo
neighbors on a square lattice. In contrast with the other ca
1-2
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where thek50 modea0 was a free parameter, in this ex
ample, it is relevant and corresponds to the average ofq that
is proportional to the magnetization of the system and
independent of time at equilibrium. The computation of t
averaged potential energy is very similar to theb-FPU case,

v5
1

4 (
k

S v0k
2 2m21

l

2
a0

2Dak
21

l

32 (
kÞk8

ak
2ak8

2

1
l

64 (
k

ak
42

m2

2
a0

21
l

4!
a0

4 . ~8!

The thermodynamic motion equations are

05a0S l

6
a0

21
l

4
Q2m2D , ~9!

äk52S v0k
2 2m21

l

2
a0

21
l

4
QDak1

l

8
ak

3 , ~10!

where v0k
2 54(sin2kx/21sin2ky/2) is the free harmonic fre

quency (k5(kx ,ky) is now a vector in the plane!, and Q
5(ak

2 is an intensive variable.
Equation~9! has multiple solutions ina0 depending on

the temperature throughQ5Q(T). Since a05^qi& is the
order parameter, we anticipate the existence of a phase
sition in the thermodynamic state. Indeed, the only solut
is a050 for Q.Q* 54m2/l but for Q,Q* , other solu-
tions with finite values of the order parameter exist

a0
25

6m2

l
2

3

2
Q5

3

2
~Q* 2Q!. ~11!

FIG. 2. Potential energy versus temperature forb50.1. The
dashed line corresponds to the result obtained by@9#, while the solid
line corresponds to Eq.~6!.
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To solve Eq.~10!, we neglect theak
3 term, as we did for the

b-FPU case~large system limit! and obtain a wave equatio
with the dispersion relation:vk

25v0k
2 1V2(T). V(T) is

given by,

V25
l

2
~Q* 2Q!, Q,Q* , ~12!

V25
l

4
~Q2Q* !, Q.Q* , ~13!

where we used the definition ofQ* and Eq.~11!. We notice
that V is the frequency corresponding to the absentk50
mode.

Given the Jeans conditionak
252T/(Nvk

2), we notice that
as long asVÞ0 (QÞQ* ), theak

3 term isa posteriorineg-
ligible, we may therefore expect results obtained with t
approximation to be accurate everywhere but at~near! the
transition. Another consequence of this condition is that m
of the modes have comparable amplitudes forVÞ0, which
then implies a Gaussian-like distribution forq. At the same
order of approximation, in the thermodynamic limit, we m
computeQ(T), identifying it to a Riemann integral. Using
theak given by the Jeans spectrum, we obtain the followi
implicit equation forQ(T):

Q~T!5
T

p
aK~a!, a5

4

41V2~T!
, ~14!

whereK(a) is the complete elliptic integral of the first kin
*0

p/2 du/A12a2sin2 u.
The solutions of Eq.~14! has three branches, plotted o

Fig. 3. We choose the same valuesm252 andl50.6 as the
ones used in@11#. We first notice the existence of a speci
temperature close to 19.69 localizes the phase-transition

FIG. 3. Solutions of the implicit Eq.~14!, for m252 and l
50.6. We notice that depending on the value ofT, up to three
different solutions forQ exist giving rise to three different branche
respectively, labeledQ1 ,Q2 ,Q3. The critical temperatureTc is
identified.
1-3
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XAVIER LEONCINI AND ALBERTO VERGA PHYSICAL REVIEW E 64 066101
perature. Two branches are belowQ* 540/3, and result from
the expression~12! used in the implicit equation, the thir
one ~on the top of the figure! corresponds to the expressio
~13!. The fact that the wave-form solutions are not valid f
Q5Q* translate in the divergence ofK(a), since asQ
→Q* , a→1. The divergence is logarithmic, and then f
sufficiently smallT, a solution aroundQ* of Eq. ~14! always
exists; resulting in the two upper branches being asympt
to theQ(T)5Q* curve asT goes to 0.

In order to select one branch from another, we comp
their respective density of energy. According to Eqs.~8! and
~9!, we have two different expressions for the density
energy,

e~T!5H T2
3m4

2l
1

3l

32
Q2, Q,Qc,

T2
l

32
Q2, Q.Qc .

~15!

The results are plotted as the temperature versus the de
of energy in Fig. 4 in an analogy to the results presented

FIG. 4. Temperature versus density of energy form252 and
l50.6. The three different branches resulting from the solution
Q presented in Fig. 3 are represented. The physical line is the u
one. The transition is clearly identified withTc'19.64 andec

'25.07.
on
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@11#. The physical relevant solution is the one whose ene
is the smaller for a given temperature, which translate in
upper line in the figure. The transition is then identified a
density of energyec525.07, whose corresponding temper
ture isTc519.69. These results are in good agreement w
the one predicted by numerical simulations@11#, respec-
tively, Tc517.65 andec521.1. Using Eq.~11!, we have also
access to the square of the magnetization and there is a
good quantitative agreement with the numerical results. T
discontinuous behavior of the magnetization at the transi
is although surprising. This behavior was also observed
merically in @11#, and is explained by noticing that the tru
order parameter iŝuqu& and notu^q&u. In the present case, w
may also wonder whether this behavior is due to theN→`
limit taken before thet→`. Indeed, the neglected terms a
relevant at the transition, and only become negligible arou
the transition after theN→` limit, which may affect the
nature of the observed transition. However, this behav
may also find its origin in the choice of writing the mome
tum as a superposition ofN8 random-phased waves~moti-
vated by the solutions of the linearized equations of moti!
equal to the number of degrees of freedomN. Writing the
momentum with the number of modesN8 being a growing
unbounded function ofN is sufficient to obtain a Gaussia
process. Another representation may then be appropriat
tackle the transition region and, for instance, in@8#, a high-
temperature approach was used to compute the critical t
perature.

To conclude, we point out that the thermodynamic moti
equations method allowed us to compute the macrosc
properties of coupled nonlinear oscillator systems in one
two dimensions. Quantitative agreement with exact or
merical results of these quantities is obtained. Moreover,
phase transition for thew4 model is detected and a goo
estimate of the critical energy and temperature are giv
even though we approximatively solved the thermodynam
motion equations. We expect that this method will be s
cessful for other systems and speculate that the actual s
ing of the exact thermodynamics motion equation sho
lead to an exact thermodynamic limit. We believe it may a
be possible to extend the scope of the method to systems
of equilibrium and describe their macroscopic evolution w
the thermodynamic motion equations.

We are grateful for fruitful discussions with S. Ruffo.
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